A Foot-Arch Parameter Measurement System Using a RGB-D Camera

نویسندگان

  • Sungkuk Chun
  • Sejin Kong
  • Kyung-Ryoul Mun
  • Jinwook Kim
چکیده

The conventional method of measuring foot-arch parameters is highly dependent on the measurer's skill level, so accurate measurements are difficult to obtain. To solve this problem, we propose an autonomous geometric foot-arch analysis platform that is capable of capturing the sole of the foot and yields three foot-arch parameters: arch index (AI), arch width (AW) and arch height (AH). The proposed system captures 3D geometric and color data on the plantar surface of the foot in a static standing pose using a commercial RGB-D camera. It detects the region of the foot surface in contact with the footplate by applying the clustering and Markov random field (MRF)-based image segmentation methods. The system computes the foot-arch parameters by analyzing the 2/3D shape of the contact region. Validation experiments were carried out to assess the accuracy and repeatability of the system. The average errors for AI, AW, and AH estimation on 99 data collected from 11 subjects during 3 days were -0.17%, 0.95 mm, and 0.52 mm, respectively. Reliability and statistical analysis on the estimated foot-arch parameters, the robustness to the change of weights used in the MRF, the processing time were also performed to show the feasibility of the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of 3-D Foot Parameters Using Hand-Held RGB-D Camera

Most people choose shoes mainly based on their foot sizes. However, a foot size only reflects the foot length which does not consider the foot width. Therefore, some people use both width and length of their feet to select shoes, but those two parameters cannot fully characterize the 3-D shape of a foot and are certainly not enough for selecting a pair of comfortable shoes. In general, the ball...

متن کامل

Live RGB-D camera tracking for television production studios

In this work, a real-time image-based camera tracker is designed for live television production studios. The major concern is to decrease camera tracking expenses by an affordable vision-based approach. First, a dense keyframe model of the static studio scene is generated using image-based dense tracking and bundle adjustment. Online camera tracking is then defined as registration problem betwe...

متن کامل

Displacement monitoring of a Long-Span Arch Railway Bridge using Digital Image Correlation (DIC)

There is an escalating demand for condition monitoring enhancement of transport infrastructures worldwide. Bridges are of vital importance in transportation infrastructure and need such monitoring. In this research, a non-contact vision-based technique called Digital Image Correlation (DIC) was used to calculate the bridge displacements. A high frame rate camera with 4K capability was used for ...

متن کامل

Detection of Moving Objects for Robotic Manipulation Applications in Non-structured Environments

Robotic manipulation tasks, particularly in unstructured environments, require detailed information about the manipulator surroundings. Location and form of objects to be manipulated are especially important information. Due to the emergence of RGB-D cameras, e.g. the Microsoft Kinect, the research community w as able to develop important results related to 3D environment mapping, scene segment...

متن کامل

Enhanced RGB-D Mapping Method for Detailed 3D Indoor and Outdoor Modeling

RGB-D sensors (sensors with RGB camera and Depth camera) are novel sensing systems that capture RGB images along with pixel-wise depth information. Although they are widely used in various applications, RGB-D sensors have significant drawbacks including limited measurement ranges (e.g., within 3 m) and errors in depth measurement increase with distance from the sensor with respect to 3D dense m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017